/* 2004-05-18 N.OTUKA: ACTV is deleted from DET-SYS */ /* 2005-11-17 N.OTUKA: "XSECTN-YIELD" in PHQ deleted */ /* 2007-03-05 N.OTUKA: TITLE corrected */ \\BIB,1[17; D#=D181; TITLE=/ENERGY DEPENDENCE OF CHARGED PIONS PRODUCED AT 180 DEGREE IN 0.8-4.89-GEV PROTON-NUCLEUS COLLISIONS/; PURPOSE=/(ABSTRACT) HIGH-ENERGY PIONS PRODUCED IN PROTON-NUCLEUS COLLISSIONS WAS STUDIED. BOTH THE SLOPES OF THE ENERGY SPECTRA AND THE PION-/PION+ RATIONS INCREASE RAPIDLY WITH PRIMARY ENERGY UP TO ABOUT 3-4 GEV, WHERE LIMITING VALUES APPEAR TO BE REACHED. THE DEPENDENCE ON TARGET MASS ALSO CHANGES OVER THIS ENERGY RANGE. UNLIKE FORWARD PION-PRODUCTION RESULTS, BACKWARD PIONS AT THESE ENERGIES DO NOT OBEY THE SCALING LAW BY SCHMIDT AND BLANKENBECLER./; ATH=(L.S.SCHROEDER'1',S.A.CHESSIN'1',J.V.GEAGA'1',J.Y.GROSSIORD'1', J.W.HARRIS'1',D.L.HENDRIE'1',R.TREUHAFT'1',K.VAN BIBBER'1'); INST-ATH=(1USABRK'1'); REF=PRL; VLP=43(1979)1787; RCTS=(C(P,PIP,X), C(P,PIN,X), AL(P,PIP,X),AL(P,PIN,X),CU(P,PIP,X), CU(P,PIN,X),SN(P,PIP,X),SN(P,PIN,X),PB(P,PIP,X),PB(P,PIN,X)); \\EXP,1[17; ENR=NAT; CHM=ELM; ACC=(BEVATRON); INST-ACC=1USABRK; INC-ENGY-RANGE=(0.8GEV,1.05GEV,2.1GEV,3.5GEV,4.89GEV); BEAM-INTNSTY=10**10/PULSE; /*@3@*/ /*@8@*/ /*@4@*/ DET-PARTCL=(PIP,PIN); DET-SYS=(MAG+TOF+SCT,EDE); /*@2@*/ /*@5@*/ /*@6@*/ /*@7@*/ /*@13@*/ PHQ=(ENGY-SPEC,XSECTN-RATIO,SP-INCL-SPEC); \\EXP,4,6,8,10; RCT=C(P,PIP,X); \\EXP,5,7,9,11; RCT=C(P,PIN,X); \\EXP,4,6,8,10; RCT=AL(P,PIP,X); \\EXP,5,7,9,11; RCT=AL(P,PIN,X); \\EXP,1,3,4,6,8,10,15,17; RCT=CU(P,PIP,X); \\EXP,2,3,5,7,9,11,12,13,14,16,17; RCT=CU(P,PIN,X); \\EXP,4,6,8,10; RCT=SN(P,PIP,X); \\EXP,5,7,9,11; RCT=SN(P,PIN,X); \\EXP,4,6,8,10; RCT=PB(P,PIP,X); \\EXP,5,7,9,11; RCT=PB(P,PIN,X); \\EXP,1,3; RCT=CU(P,PIP,X); \\DATA,1; CMPD=X; RSD=X; /*@6@*/ /*FIG.1-(A)*/ /* D181 FIG 1-(A) */ /* SER#= 1 */ /* XSCALE=LINEAR YSCALE=LINEAR */ /* XMAX= 8.000E+00 YMAX= 6.000E+01 */ /* XMIN= 0.000E+00 YMIN= 0.000E+00 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; INC-ENGY-LAB DATA1'9' DELTA-DATA1 (GEV) (MEV) (MEV) 0.77 3.63E+01 2.13E+00 1.04 4.16E+01 1.99E+00 2.08 5.29E+01 2.28E+00 3.50 5.79E+01 2.42E+00 4.87 6.26E+01 2.13E+00 \END; /*@9@*/ \\EXP,2,3; RCT=CU(P,PIN,X); \\DATA,2; CMPD=X; RSD=X; /*@6@*/ /*FIG.1-(B)*/ /* D181 FIG 1-(B) */ /* SER#= 2 */ /* XSCALE=LINEAR YSCALE=LINEAR */ /* XMAX= 8.000E+00 YMAX= 6.000E+01 */ /* XMIN= 0.000E+00 YMIN= 0.000E+00 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; INC-ENGY-LAB DATA1'9' DELTA-DATA1 (GEV) (MEV) (MEV) 0.84 2.96E+01 2.13E+00 1.09 3.77E+01 2.41E+00 2.12 5.09E+01 1.70E+00 4.92 5.89E+01 2.27E+00 \END; /*@9@*/ \\DATA,3; CMPD=X; RSD=X; /*@6@*/ /*FIG.1-(C)*/ /* D181 FIG 1-(C) */ /* SER#= 3 */ /* XSCALE=LINEAR YSCALE=LINEAR */ /* XMAX= 8.000E+00 YMAX= 1.000E+00 */ /* XMIN= 0.000E+00 YMIN= 0.000E+00 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; INC-ENGY-LAB DATA-RATIO'10' DELTA-DATA-RATIO (GEV) (NODIM) (NODIM) 0.80 2.68E-01 4.27E-02 1.07 3.36E-01 4.84E-02 2.12 6.35E-01 5.41E-02 4.95 9.91E-01 4.27E-02 \END; /*@10@*/ \\DATA,4; INC-ENGY=0.8GEV; /*FIG.2-(A)*/ /* D181 FIG 2-(A) */ /* SER#= 4 */ /* XSCALE=LINEAR YSCALE=LINEAR */ /* XMAX= 3.500E+00 YMAX= 1.200E+00 */ /* XMIN= 0.000E+00 YMIN= 6.000E-01 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; DATA2'11' DATA3'12' DELTA-DATA3 (NODIM) (NODIM) (NODIM) 0.75 6.72E-01 4.59E-02 0.92 7.09E-01 5.16E-02 1.03 6.23E-01 5.45E-02 1.46 7.21E-01 4.59E-02 1.64 7.21E-01 6.02E-02 2.01 7.26E-01 6.60E-02 2.60 6.69E-01 8.03E-02 3.04 8.01E-01 9.18E-02 \END; \\DATA,5; INC-ENGY=0.8GEV; /*FIG.2-(B)*/ /* D181 FIG 2-(B) */ /* SER#= 5 */ /* XSCALE=LINEAR YSCALE=LINEAR */ /* XMAX= 3.500E+00 YMAX= 1.200E+00 */ /* XMIN= 0.000E+00 YMIN= 6.000E-01 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; DATA2'11' DATA3'12' DELTA-DATA3 (NODIM) (NODIM) (NODIM) 1.07 8.34E-01 7.21E-02 1.57 7.79E-01 6.05E-02 1.70 7.30E-01 5.48E-02 2.06 7.73E-01 7.21E-02 2.81 8.11E-01 7.78E-02 3.00 7.24E-01 7.49E-02 \END; \\DATA,6; INC-ENGY=1.05GEV; /*FIG.2-(C)*/ /* D181 FIG 2-(C) */ /* SER#= 6 */ /* XSCALE=LINEAR YSCALE=LIENAR */ /* XMAX= 3.500E+00 YMAX= 1.200E+00 */ /* XMIN= 0.000E+00 YMIN= 6.000E-01 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; DATA2'11' DATA3'12' DELTA-DATA3 (NODIM) (NODIM) (NODIM) 0.64 7.17E-01 3.98E-02 0.69 6.68E-01 5.11E-02 0.93 7.14E-01 5.40E-02 1.04 6.31E-01 4.54E-02 1.43 7.17E-01 6.54E-02 \END; \\DATA,7; INC-ENGY=1.05GEV; /*FIG.2-(D)*/ /* D181 FIG 2-(D) */ /* SER#= 7 */ /* XSCALE=LINEAR YSCALE=LIENAR */ /* XMAX= 3.500E+00 YMAX= 1.200E+00 */ /* XMIN= 0.000E+00 YMIN= 6.000E-01 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; DATA2'11' DATA3'12' DELTA-DATA3 (NODIM) (NODIM) (NODIM) 0.79 7.67E-01 6.34E-02 1.10 8.51E-01 8.36E-02 1.60 7.38E-01 6.05E-02 2.92 7.15E-01 9.80E-02 \END; \\DATA,8; INC-ENGY=2.1GEV; /*FIG.2-(E)*/ /* D181 FIG 2-(E) */ /* SER#= 8 */ /* XSCALE=LINEAR YSCALE=LIENAR */ /* XMAX= 3.500E+00 YMAX= 1.200E+00 */ /* XMIN= 0.000E+00 YMIN= 6.000E-01 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; DATA2'11' DATA3'12' DELTA-DATA3 (NODIM) (NODIM) (NODIM) 0.54 8.06E-01 4.85E-02 0.62 7.91E-01 4.57E-02 1.06 8.11E-01 4.57E-02 1.18 8.71E-01 4.85E-02 1.57 8.51E-01 5.42E-02 2.12 1.01E+00 9.42E-02 2.33 9.77E-01 9.14E-02 \END; \\DATA,9; INC-ENGY=2.1GEV; /*FIG.2-(F)*/ /* D181 FIG 2-(F) */ /* SER#= 9 */ /* XSCALE=LINEAR YSCALE=LIENAR */ /* XMAX= 3.500E+00 YMAX= 1.200E+00 */ /* XMIN= 0.000E+00 YMIN= 6.000E-01 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; DATA2'11' DATA3'12' DELTA-DATA3 (NODIM) (NODIM) (NODIM) 0.59 8.10E-01 3.98E-02 0.62 8.45E-01 4.54E-02 1.08 8.50E-01 5.40E-02 1.62 9.53E-01 6.25E-02 1.76 9.90E-01 6.82E-02 2.17 1.10E+00 9.66E-02 \END; \\DATA,10; INC-ENGY=4.89GEV; /*FIG.2-(G)*/ /* D181 FIG 2-(G) */ /* SER#= 10 */ /* XSCALE=LINEAR YSCALE=LIENAR */ /* XMAX= 3.500E+00 YMAX= 1.200E+00 */ /* XMIN= 0.000E+00 YMIN= 6.000E-01 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; DATA2'11' DATA3'12' DELTA-DATA3 (NODIM) (NODIM) (NODIM) 0.43 8.73E-01 4.50E-02 0.72 8.73E-01 4.78E-02 0.82 8.11E-01 5.91E-02 1.19 9.18E-01 6.76E-02 1.49 9.49E-01 8.16E-02 1.62 1.05E+00 7.04E-02 1.92 1.20E+00 9.85E-02 2.04 1.18E+00 1.18E-01 \END; /*@11@*/ /*@12@*/ \\DATA,11; INC-ENGY=4.89GEV; /*FIG.2-(H)*/ /* D181 FIG 2-(H) */ /* SER#= 11 */ /* XSCALE=LINEAR YSCALE=LIENAR */ /* XMAX= 3.500E+00 YMAX= 1.200E+00 */ /* XMIN= 0.000E+00 YMIN= 6.000E-01 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; DATA2'11' DATA3'12' DELTA-DATA3 (NODIM) (NODIM) (NODIM) 0.39 8.80E-01 3.96E-02 0.55 9.14E-01 3.96E-02 0.60 8.80E-01 4.81E-02 0.75 8.66E-01 4.81E-02 0.80 9.17E-01 6.22E-02 1.12 9.48E-01 7.35E-02 1.22 1.00E+00 5.94E-02 1.51 1.12E+00 8.20E-02 1.63 1.14E+00 9.05E-02 2.03 1.09E+00 7.35E-02 2.32 1.16E+00 1.27E-01 \END; /*@11@*/ /*@12@*/ \\DATA,12; INC-ENGY=0.8GEV; /*@13@*/ /*FIG.3-(A)*/ /* D181 FIG 3-(A) */ /* SER#= 12 */ /* XSCALE=LINEAR YSCALE=LOG */ /* XMAX= 5.000E-01 YMAX= 1.000E+02 */ /* XMIN= 0.000E+00 YMIN= 1.000E-04 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; DATA4'14' DATA5'15' DELTA-DATA5 (NODIM) (UNIT5) (UNIT5) 0.26 2.07E+01 3.66E+00 0.28 1.39E+01 3.68E+00 0.39 8.39E-01 1.85E-01 0.41 4.97E-01 1.20E-01 \END; \\DATA,13; INC-ENGY=1.05GEV; /*@13@*/ /*FIG.3-(B)*/ /* D181 FIG 3-(B) */ /* SER#= 13 */ /* XSCALE=LINEAR YSCALE=LOG */ /* XMAX= 5.000E-01 YMAX= 1.000E+02 */ /* XMIN= 0.000E+00 YMIN= 1.000E-04 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; DATA4'14' DATA5'15' DELTA-DATA5 (NODIM) (UNIT5) (UNIT5) 0.20 2.53E+01 XXXXXXXX 0.21 1.83E+01 XXXXXXXX 0.30 1.71E+00 3.76E-01 0.31 1.30E+00 3.15E-01 0.40 1.95E-01 4.73E-02 0.42 1.54E-01 3.39E-02 \END; \\DATA,14; INC-ENGY=2.1GEV; /*@13@*/ /*FIG.3-(C)*/ /* D181 FIG 3-(C) */ /* SER#= 14 */ /* XSCALE=LINEAR YSCALE=LOG */ /* XMAX= 5.000E-01 YMAX= 1.000E+02 */ /* XMIN= 0.000E+00 YMIN= 1.000E-04 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; DATA4'14' DATA5'15' DELTA-DATA5 (NODIM) (UNIT5) (UNIT5) 0.10 1.16E+02 XXXXXXXX 0.11 9.13E+01 XXXXXXXX 0.16 1.39E+01 2.45E+00 0.16 1.06E+01 1.21E+00 0.20 2.72E+00 6.60E-01 0.22 1.70E+00 3.74E-01 0.25 4.97E-01 1.31E-01 0.27 2.41E-01 6.38E-02 0.31 8.89E-02 2.35E-02 0.32 2.33E-02 8.39E-03 \END; \\DATA,15; INC-ENGY=3.5GEV; /*@13@*/ /*FIG.3-(D)*/ /* D181 FIG 3-(D) */ /* SER#= 15 */ /* XSCALE=LINEAR YSCALE=LOG */ /* XMAX= 5.000E-01 YMAX= 1.000E+02 */ /* XMIN= 0.000E+00 YMIN= 1.000E-04 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; DATA4'14' DATA5'15' DELTA-DATA5 (NODIM) (UNIT5) (UNIT5) 0.06 2.18E+02 XXXXXXXX 0.07 1.85E+02 XXXXXXXX 0.09 4.27E+01 4.89E+00 0.10 3.14E+01 3.60E+00 0.12 9.03E+00 8.54E-01 0.13 5.44E+00 1.07E+00 0.16 2.89E+00 4.49E-01 0.17 1.26E+00 2.76E-01 0.18 6.32E-01 1.53E-01 0.20 2.91E-01 6.39E-02 \END; \\DATA,16; INC-ENGY=4.89GEV; /*@13@*/ /*FIG.3-(E)*/ /* D181 FIG 3-(E) */ /* SER#= 16 */ /* XSCALE=LINEAR YSCALE=LOG */ /* XMAX= 5.000E-01 YMAX= 1.000E+02 */ /* XMIN= 0.000E+00 YMIN= 1.000E-04 */ /* FOLLOWING DATA ARE TAKEN FROM GRAPH */ \DATA; DATA4'14' DATA5'15' DELTA-DATA5 (NODIM) (UNIT5) (UNIT5) 0.06 1.99E+02 XXXXXXXX 0.06 1.54E+02 XXXXXXXX 0.07 8.35E+01 XXXXXXXX 0.07 5.92E+01 XXXXXXXX 0.08 3.26E+01 5.76E+00 0.08 2.08E+01 3.22E+00 0.10 8.27E+00 1.46E+00 0.11 4.81E+00 1.05E+00 0.12 1.92E+00 3.79E-01 0.13 1.11E+00 1.96E-01 0.15 3.57E-01 7.07E-02 0.15 2.12E-01 1.99E-02 0.17 5.17E-02 1.02E-02 0.18 2.56E-02 5.62E-03 \END; /*@15@*/ /*@14@*/ \\DATA,17; INC-ENGY=(0.8GEV,1.05GEV,2.1GEV,3.5GEV,4.89GEV); CMPD=ZN; /*@13@*/ \DATA; INC-ENGY DATA6'16' (GEV) (NO-DIM) 0.8 16 1.05 19 2.1 30 3.5 42 4.89 65 \END; /*@16@*/ \\END; @@2; METHOD=THE MAGNETIC RIGIDITY (P/Z) OF THE SPECTROMETER, AND DE/DX INF ORMATION FROM THE SCINTILLATORS ALLOWED US TO SEPARATE AND IDENTIFY P IONS FROM OTHER PARTICLES. @@3; ANALYSIS= AVERAGE ACCEPTANCE PARAMETERS FOR THIS SYSTEM ARE THAT DELT A-OMEGA IS ABOUT 1 MILI-SR AND DELTA-P/P=+-6 % PER HODOSCOPE ELEMENT, AND ANGL-LAB=180+-1 DEGREE. THE RESULTS PRESENTED ARE FOR PIONS WITH KINETIC ENERGIES OF LARGER T HAN 100 MEV. @@5; ERR-ANALYSIS= THE LEPTON COTAMINATION IS LESS THAN 4 %. WE ESTIMATE O UR OVERALL UNCERTAINTY TO BE 12-15 %. @@6; EFFECTIVE-TARGET MODEL OF M. TA-CHUNG ET AL.(1978). @@7; OUR PION SPECTRA FALL OFF EXPONENTIALLY, AND HAVE PARAMETRIZED THE LO RENTZ-INVARIANT PION CROSS-SECTIONS BY THE FORM, E(DSIGMA/DMOM**3)=C* EXP(-T/T0), WHERE T IS THE PION LABORATORY KINETIC ENERGY. @@8; ANALYSIS=(INTED) INTEGRATION OF ENERGY DISTRIBUTION, UP TO 100 MEV. @@9; '9' DATA1=T0, T0 IS IN THE LORENTZ-INVARIANT PION CROSS-SECTIONS BY T HE FORM, E*(DSIGMA/DMOM**3)=C*EXP(-T/T0) . @@10; '10' DATA-RATIO = THE PION-/PION+ RATIO OF THE SINGLE-PARTICLE INCLUS IVE SPECTRA AT 180 DEGREE. @@11; '11' DATA2 = THE RATIO OF THE PION LABORATORY KINETIC ENERGY TO THE M AXIMUM VALUE KINEMATICALLY ALLOWED FOR AN N-N COLLISION, ENERGY/(ENER GY-MAX(NN TO NNPION) ). @@12; '12' DATA3 = EXPONENT N, WHICH APPEARS AS E*(DSIGMA/DMOM**3)=C*(MASS) **N. @@13; HARD-SCATTERING MODEL OF SCHMIDT-BLANKENBECLER(1977). @@14; '14' DATA4 = X, WHERE X IS THE RATIO OF PION MOMENTUM-CM/MOMENTUM-CM- MAX. @@15; '15' DATA5 = ENGY*(DSIGMA/DOMEGA/DMOM**3) UNIT5 = GEV*(MB/SR/(GEV/C)**3) @@16; '16' DATA6 = N, WHERE THE MEANING OF N IS GIVEN BY E*(DSIGMA/DMOM**3) =C*(1-X)**N. @@;