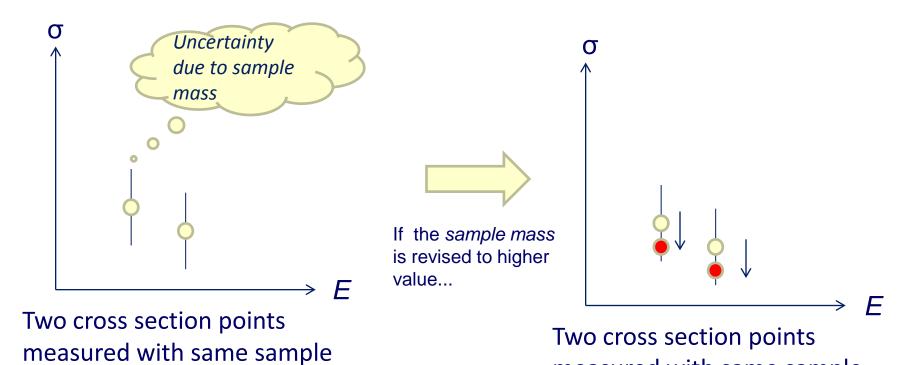

International Atomic Energy Agency

Uncertainty and Covariance in EXFOR

N. Otsuka, R. Capote, V. Zerkin IAEA Nuclear Data Section


Contents

- 1. Compilation of experimental covariance for EXFOR (Otsuka)
- 2. Evaluation of nuclear reaction data covariance at NDS (Capote)
- 3. Web interface for covariance in ENDF Formats (Zerkin)

Uncertainty – for Future Use of EXFOR data

Example of Correlations

No such a relation for uncorrelated source (e.g., counting statistics)

measured with same sample

Uncertainty – for Future Use of EXFOR data

Let us consider a quantity Q which depends on the capture cross sections at two neutron energy points a and b:

$$Q\left(\sigma^{a}_{(n,\gamma)}, \sigma^{b}_{(n,\gamma)}\right)$$
.

Error propagation from σ to Q:

Total uncertainty of σ^b

$$(\Delta Q)^2 = \left(\frac{\partial Q}{\partial \sigma^a}\right)^2 \left(\Delta \sigma^a\right)^2 + \left(\frac{\partial Q}{\partial \sigma^b}\right)^2 \left(\Delta \sigma^b\right)^2 + \left(\frac{\partial Q}{\partial \sigma^a}\right) V^{ab} \left(\frac{\partial Q}{\partial \sigma^b}\right)$$
Total uncertainty of σ^a

Covariance between σ^a and σ^b

Not only total uncertainty, but also <u>covariance</u> may play an important role in error propagation.

Uncertainty – for Future Use of EXFOR data

Partial Uncertainty and Correlation Coefficient

$$V^{ab} = \sum_{i} \frac{\partial \sigma^{a}}{\partial x_{i}^{a}} V_{i}^{ab} \frac{\partial \sigma^{b}}{\partial x_{i}^{b}} = \sum_{i} \Delta \underline{\sigma_{i}^{a}} \underline{c_{i}^{ab}} \Delta \sigma_{i}^{b}$$
correlation coeff. $|c| \leq 1$

partial uncertainty due to i-th parameter

- In order to obtain the covariance V^{ab} , both partial uncertainties and correlation coefficients for each i-th component should be known.
- Partial uncertainties (or their ranges) are often reported.
 But <u>correlation properties</u> are rarely reported.

Example of Correlation Coefficient "c"

Example of correlation property in 67 Zn(n, α) 64 Ni cross section (Guohui Zhang et al., Phys.Phys.C82(2010)054619)

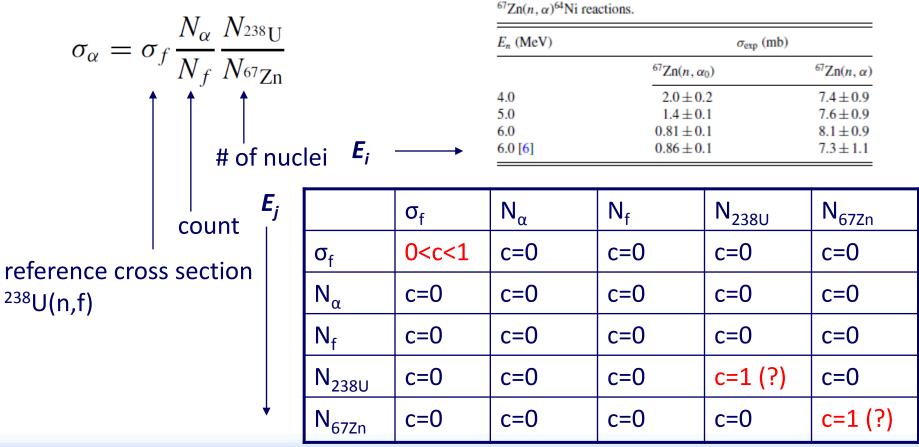


TABLE I. Measured cross sections of the 67 Zn $(n, \alpha_0)^{64}$ Ni and

Impact of Covariance – Example

Two activation cross section ratios under ²⁵²Cf(sf) PFNS

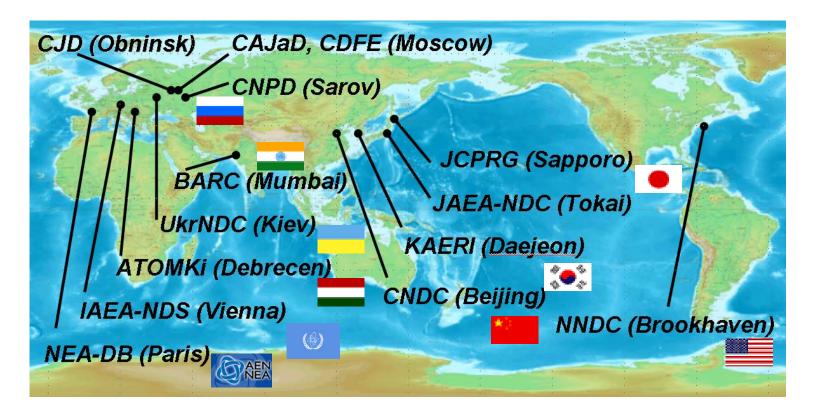
- W. Mannhart, A Small Guide to Generating Covariances of Experimental Data, INDC(NDS)-0588 (2010)

$$R_1 = {}^{27}\text{Al}(n,p)/{}^{27}\text{Al}(n,\alpha)$$

 $R_2 = {}^{24}\text{Mg}(n,p)/{}^{115}\text{In}(n,n')$

If we ignore covariance (e.g., treat all uncertainties as random uncertainties),

$$R_1 = 4.797 \pm 4.84\%$$


$$R_2 = 0.009651 \pm 5.67\%$$

If we consider covariance,

$$R_1 = 4.797 \pm 3.35\%$$

$$R_2 = 0.009651 \pm 4.36\%$$

EXFOR – Experimental Data *Exchange*

14 centres from 8 countries and 2 international organisations (China, Hungary, India, Japan, Korea, Russia, Ukraine, USA, NEA, IAEA)

Experimental data exchange coordinated by IAEA-NDS

Uncertainty in EXFOR – Brief History

F. G. Perey (ORNL) – Harwell Conference (Sept. 1978)

"We urge experimentalists to report the uncertainties in their measurements in such a fashion that the covariance matrix of their results can be generated."

"We hope that data compilers in the future will expand their data compilation formats such that this valuable information can be made available."

In reality, authors often report only "total uncertainty".

COVARIANCE MATRICES OF EXPERIMENTAL DATA*

F. G. Perey
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830 U.S.A.

ABSTRACT

A complete statement of the uncertainties in data is given by its covariance matrix. It is shown how the covariance matrix of data can be generated using the information available to obtain their standard deviations. Determination of resonance energies by the time-of-flight method is used as an example. The procedure for combining data when the covariance matrix is non-diagonal is given. The method is illustrated by means of examples taken from the recent literature to obtain an estimate of the energy of the first resonance in carbon and for five resonances of $2^{\rm 130}{\rm U}$.

"Total uncertainty" is insufficient !!

5th NRDC Meeting (October 1980) – M. Bhat (NNDC) mentioned:

When evaluators go back to the original references, as they must, the needed information is not there. If the data centres required experimenters to supply the needed information, the data available to the evaluators would be more complete.

Data Centres (EXFOR compilers) are encouraged receive not only total uncertainty but also partial uncertainties from authors even if they are not reported in the articles.

Note: Authors providing the "total uncertainty" also should be able to provide partial uncertainties.

What we can keep in the current EXFOR Formats?

- Both total uncertainty and partial uncertainties
- Constant and energy dependent uncertainties

COMMON

ERR-1	ERR-2
PER-CENT	PER-CENT
1.2	0.1

ENDCOMMON

DATA

EN	DATA	ERR-T	ERR-S	ERR-3	ERR-4
MEV	MB	PER-CENT	PER-CENT	PER-CENT	PER-CENT
8.34	96.8	6.5	5.0	1.9	0.9
9.15	162.9	5.7	4.0	1.9	0.6
•••	•••	•••	•••	•••	•••

C. Sage et al., Phys. Rev. C81(2010)064604

TABLE VI. Uncertainties (in %) for the most significant contributions in Eq. (1) at each neutron energy. Only the diagonal elements are given. The full matrix for each component is not given here but was used to obtain the correlation matrix in Table V.

Neutron energy (MeV)	$\sigma_{ m Al}$	$S_{\rm Am}$	S_{Al}	$I_{\rm Am}$	n_{Al}	n _{Am}	$\epsilon_{ m AI}/\epsilon_{ m Am}$	$(f_{\Sigma}f_r)_{\mathrm{Am}}$	$\frac{C_{\text{low}, \text{Am}}}{C_{\text{low}, \text{Al}}}$
8.34	1.9	5.0	1.0	1.2	0.1	0.3	3.0	0.9	
9.15	1.9	4.0	1.0	1.2	0.1	0.3	3.0	0.6	
13.33	1.6	2.5	1.0	1.2	0.1	0.3	3.0	0.4	0.3
16.1	2	2.1	1.0	1.2	0.1	0.3	3.0	0.6	0.3
17.16	2	1.5	1.0	1.2	0.1	0.3	3.0	0.6	0.3
17.9	2.2	1.3	0.7	1.2	0.1	0.3	3.0	0.7	0.3
19.36	3.1	6.3	2.0	1.2	0.1	0.3	3.0	0.6	1.3
19.95	4.1	1.4	1.0	1.2	0.1	0.3	3.0	0.6	1.4
20.61	5.4	5.7	1.6	1.2	0.1	0.3	3.0	0.6	1.4

From EXFOR uncertainty to covariance

A typical experimental covariance derivation from EXFOR (between two energy bin Ei and Ej)

$$\begin{split} V_{ij} &= \delta_{ij} \Delta_{sta}(E_i) \Delta_{sta}(E_j) & \text{(statistical uncertainty)} \\ &+ \Sigma_k \Delta^k_{sys}(E_i) \Delta^k_{sys}(E_j) \ c^k_{ij} & \text{(k-th systematic uncertainty)} \\ c^k &: \text{correlation matrix of k-th uncertainty} \end{split}$$

Partial uncertainties Δ and their correlation properties c are required for construction of experimental covariance.

Sometimes they are missing in EXFOR even they are reported in the original article...

Retroactive corrections of EXFOR entries

Example: EXFOR 22292.003 45Sc(n,2n)44Sc cross section

```
ERR-ANALYS (DATA-ERR) TOTAL ERRORS.
           (21-SC-45(N,2N)21-SC-44,,SIG)
REACTION
DATA
EN
           EN-ERR
                      DATA
                                  DATA-ERR
MEV
           MEV
                      MB
                                  MB
 1.1580E+01 1.7000E-01 2.0000E+00 8.0000E-01
 1.1970E+01 1.8000E-01 2.1000E+01 2.6000E+00
 1.2400E+01 1.8000E-01 5.2000E+01 6.1000E+00
 1.2850E+01 2.0000E-01 7.5000E+01 8.0000E+00
                      6
ENDDATA
```

M. Bostan et al., Phys. Rev. C49(1994)266 (More detailed reports on uncertainties)

TABLE II. Principal sources of errors and their magnitudes.

	M	lagnitude	%
Source of uncertainty	Gamma	counting	Beta counting
	(n,2n)	(n,α)	(n,p)
Uncorrelated	, ,	, , ,	, , , , ,
Sample weight	0.1	0.1	0.1
Irradiation time	0.1	0.1	0.1
Irradiation geometry and	3	3	3
beam deviation			
Error in peak area analysis	3	3	
Statistics of counting	3	3	3
Chemical yield ^a			3
Correction for activity induced	1 - 3	$5-20^{\rm b}$	520^{b}
by background neutrons			
(gas in/out, breakup)			
Correlated			
Error in excitation function	3-8	3-8	3-8
of monitor reaction			
Efficiency of the detector	5	5-8	12
(Self-absorption, geometry)		
Decay data	1	1	1
Total	8-12	10-24	16-26

^aChemical separation was done only for the ${}^{45}\mathrm{Sc}(n,p){}^{45}\mathrm{Ca}$ reaction product.

Retroactive correction is on-going.

^bThis correction is high for low threshold reactions.

EXFOR for experimental correlation

TABLE II. Principal sources of errors and their magnitudes.

	Magnitude%				
Source of uncertainty	Gamma	counting	Beta counting		
	(n,2n)	(n, α)	(n,p)		
Uncorrelated					
Sample weight	0.1	0.1	0.1		
Irradiation time	0.1	0.1	0.1		
Irradiation geometry and	3	3	3		
beam deviation					
Error in peak area analysis	3	3			
Statistics of counting	3	3	3		
Chemical yield ^a			3		
Correction for activity induced by background neutrons (gas in/out, breakup) Correlated	1–3	5-20 ^b	5-20 ^b		
error in excitation function	3-8	3-8	3-8		
Efficiency of the detector	5	5-8	12		
(Self-absorption, geometry) Decay data	1	1	1		
Total	8-12	10-24	16-26		

^aChemical separation was done only for the $^{45}\mathrm{Sc}(n,p)^{45}\mathrm{Ca}$ reaction product.

$$V_{ij} = \delta_{ij} \Delta_{sta}(E_i) \Delta_{sta}(E_j) + \Sigma_k \Delta_{sys}^k(E_i) \Delta_{sys}^k(E_j) C_{ij}^k$$

Indication of correlation property in EXFOR is under discussion

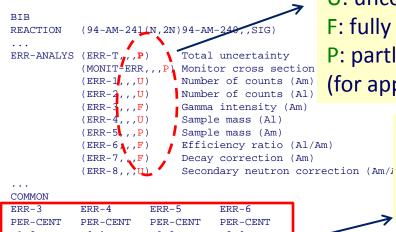
U: Uncorrelated (Long range, $c_{ij} = \delta_{ij}$) F: Fully correlated (Short range, $c_{ii} = 1$)

(ERR-1,,,U) Sample weight (ERR-2,,,U) Irradiation time (ERR-3,,,F) Detector efficiency

•••

Problem: Authors often do not know correlation properties.

^bThis correction is high for low threshold reactions.


EXFOR for experimental correlation (cont)

C. Sage et al., Phys.Rev.C81(2010)064604 $- {}^{243}$ Am(n,2n) cross section.

TABLE VI. Uncertainties (in %) for the most significant contributions in Eq. (1) at each neutron energy. Only the diagonal elements are given. The full matrix for each component is not given here but was used to obtain the correlation matrix in Table V.

Neutron energy (MeV)	$\sigma_{ m Al}$	$S_{\rm Am}$	$S_{\rm Al}$	$I_{\rm Am}$	n_{Al}	n _{Am}	$\epsilon_{ m AI}/\epsilon_{ m Am}$	$(f_{\Sigma}f_r)_{\mathrm{Am}}$	Clow,Am
8.34	1.9	5.0	1.0	1.2	0.1	0.3	3.0	0.9	
9.15	1.9	4.0	1.0	1.2	0.1	0.3	3.0	0.6	
13.33	1.6	2.5	1.0	1.2	0.1	0.3	3.0	0.4	0.3
16.1	2	2.1	1.0	1.2	0.1	0.3	3.0	0.6	0.3
17.16	2	1.5	1.0	1.2	0.1	0.3	3.0	0.6	0.3
17.9	2.2	1.3	0.7	1.2	0.1	0.3	3.0	0.7	0.3
19.36	3.1	6.3	2.0	1.2	0.1	0.3	3.0	0.6	1.3
19.95	4.1	1.4	1.0	1.2	0.1	0.3	3.0	0.6	1.4
20.61	5.4	5.7	1.6	1.2	0.1	0.3	3.0	0.6	1.4

7	U: uncorrelated
	F: fully correlated
on	P: partly correlated
on m)	(for approval)

Partial

values

uncertainty

Correlation Property

		1 111 01111					
1.2	0.1	0.3	3.0				
ENDCOMMON							
DATA							
EN	DATA	ERR-T	MONIT-ERR	ERR-1	ERR-2	ERR-7	ERR-8
MEV	MB	PER-CENT	PER-CENT	PER-CENT	PER-CENT	PER-CENT	PER-CENT
8.34	96.8	6.5	1.9	5.0	1.0	0.9	
9.15	162.9	5.7	1.9	4.0	1.0	0.6	
13.33	241.8	4.6	1.6	2.5	1.0	0.4	0.3
16.1	152.4	4.6	2.	2.1	1.0	0.6	0.3
17.16	116.1	4.4	2.	1.5	1.0	0.6	0.3
17.9	105.7	4.4	2.2	1.3	0.7	0.7	0.3
19.36	89.5	8.2	3.1	6.3	2.0	0.6	1.3
19.95	102.1	5.8	4.1	1.4	1.0	0.6	1.4
20.61	77.9	8.8	5.4	5.7	1.6	0.6	1.4
ENDDATA							

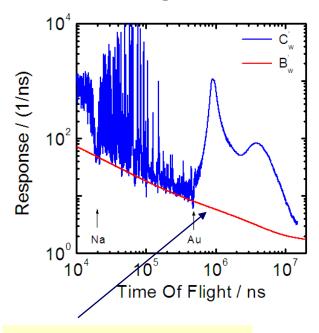
EXFOR for experimental correlation (cont)

Guohui Zhang et al., Phys.Phys.C82(2010)054619 – 67Zn(n,α)64Ni cross section (EXFOR 32689)

TABLE I. Measured cross sections of the $^{67}\text{Zn}(n, \alpha_0)^{64}\text{Ni}$ and $^{67}\text{Zn}(n, \alpha)^{64}\text{Ni}$ reactions.

E_n (MeV)	$\sigma_{ m exp}$	(mb)
	$^{67}\mathrm{Zn}(n,\alpha_0)$	67 Zn (n, α)
4.0	2.0 ± 0.2	7.4 ± 0.9
5.0	1.4 ± 0.1	7.6 ± 0.9
6.0	0.81 ± 0.1	8.1 ± 0.9
6.0 [6]	0.86 ± 0.1	7.3 ± 1.1

$$\sigma_{\alpha} = \sigma_f \frac{N_{\alpha}}{N_f} \frac{N_{238}_{\mathrm{U}}}{N_{67}_{\mathrm{Zn}}}$$


ERR-ANALYS	(ERR-T) To	otal uncerta	ainties				
	(ERR-1,7.,11.) The uncertainty of alpha counts Na						
	(ERR-2) The uncertainty of fission counts Nf						
	(ERR-3) T	he uncertain	nty of the atomic number of 67Zn				
	(ERR-4) T	he uncertair	nty of the atomic number of U238				
	(MONIT-ER	R) The uncer	rtainty of 238U(n,f) cross-section.				
ENDBIB		60					
COMMON		4	3				
ERR-2	ERR-3	ERR-4	MONIT-ERR				
PER-CENT	PER-CENT	PER-CENT	PER-CENT				
2.5	1.5	1.3	1.				
ENDCOMMON		3					
ENDSUBENT		67					
SUBENT	326890	03 2011032	24				
BIB		1	1				
REACTION	(30-ZN-67	(N,A)28-NI-	64,,SIG)				
ENDBIB		1					
NOCOMMON		0	0				
DATA		4	3				
EN	DATA	ERR-T	MONIT				
MEV	MB	MB	MB				
4.0	7.4	0.9	554.40				
5.0	7.6	0.9	546.71				
6.0	8.1	0.9	610.79				
ENDDATA		5					
ENDSUBENT	:	11					

- Alpha counting statistics must be given in energy dependent form.
- •Counts Na and Nf are uncorrelated, but now it is not clear from the entry.
- •Indication of correlation properties (U,F,P) is desired.

Covariance in resonance region

(Collaboration with P. Scillebeeckx et al. - IRMM)

Transmission=(C_{in}-B_{in})/(C_{out}-B_{out}) C: count, B: backgound

source of correlation

High resolution TOF experiment: channel number n~10⁴

 $V (n \times n \text{ matrix})$ is too big for EXFOR!

Cholesky decomposition (by AGS package) $V = SS^{T}$

(V: $n \times n$ matrix, S: $n \times k$ matrix, $k^{\sim}10$)

S can be stored in to the EXFOR library.

n+113Cd measured at GELINA

– EXFOR 23077 (released: 2 Sept. 2011)

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier.com/locate/nimb

The total cross section and resonance parameters for the 0.178 eV resonance of ¹¹³Cd

S. Kopecky a,*, I. Ivanov a,1, M. Moxon a,b, P. Schillebeeckx a, P. Siegler a, I. Sirakov a,1

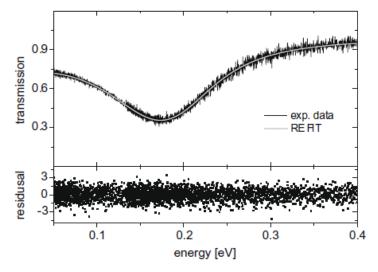


Fig. 2. Fit to sample 1, metallic sample with 30 µm thickness.

Table 1
Comparison of the resonance parameters of the 0.178 eV ¹¹³Cd resonance found in the literature.

Experiment	Sample type	E _{res} (eV)	Γ _γ (meV)	Γ_n (meV)
Rainwater et al. [5]	Metal	0.176 ± 0.002	115 ± 2	0,620 ± 0,020
Brockhouse [6]	Metal	0.180 ± 0.003	113 ± 2	0.680 ± 0.020
Akyūz et al. [7]	Metal	0.181 ± 0.003	109 ± 3	0.645 ± 0.025
Widder and Brunner [8]	Powder	0.1776 ± 0.0006	114.3 ± 0.6	0.618 ± 0.003
Harz and Priesmeyer [9]	Various	0.1783 ± 0.0002	113.5 ± 0.5	0.650 ± 0.005

diff:5%

^{*}EC-JRC, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel, Belgium

b Hyde Copse, Marcham, United Kingdom

n+113Cd measured at GELINA

- EXFOR 23077 subentries

- <u> </u>	Audiol 1	Lucigy lange, ev	LUINUU	RETELEMENT	ACCESSIONAL MON NEW
(N, TOT),,TRN	C4:				
Quantity: [CS] Transmission	Transmis	ssion			
	S.Kopecky+	z.uue-z 4.80e0	25288	1 T NTM/B 267 2245 2000	23077002 2009KO14
	5.Kopecky+		25288	+ J,NIM/B,267,2345,2009	003 2009K014
2 Info X4 X4+ X4± T4		2.00e-2 4.80e0			
3 Info X4 X4+ X4± T4			0		004 2009KO14
	C4: MF402 MT6001				
Quantity: [RP] Resonance energy					
4 Info X4 X4+ X4± T4 2009	S.Kopecky+	1.79e-1	3	+ J,NIM/B,267,2345,2009	230770051 2009K014
5 Info X4 X4+ X4± T4		1.79e-1	1		0061 2009K014
6 Info X4 X4+ X4± T4		1.79e-1	1		0071 2009K014
¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬	4: MF402 MT6003				
Quantity: [RP] Spin J					
7 Info X4 X4+ X4± T4 2009	S.Kopecky+	1.79e-1	1	+ J,NIM/B,267,2345,2009	230770065 2009K014
	4: MF402 MT6002				
Quantity: [RP] Momentum L					
	S.Kor Resonal			+ J,NIM/B,267,2345,2009	230770064 2009K014
	I INCOULIA	nce parame	ters	+ 0,NIM/B,267,2343,200	230770064 2009R014
△ (5)	C4:	•			
Quantity: [RP] Resonance width					
	S.Kopecky+	1.78e-1 1.79e-1	3	+ J,NIM/B,267,2345,2009	
10 Info X4 X4+ X4± T4		1.79e-1	1		0063 2009K014
11 Info X4 X4+ X4± T4		1.79e-1	1		0073 2009K014
(N,G),,WID (N,G)	C4: MF402 MT6031				
Quantity: [RP] Resonance width					
12 Info X4 X4+ X4± T4 2009	S.Kopecky+	1.78e-1 1.79e-1	3	+ J,NIM/B,267,2345,2009	9 230770052 2009K014
13 Info X4 X4+ X4± T4		1.79e-1	1		0062 2009K014
14 Info X4 X4+ X4± T4		1.79e-1	1		0072 2009K014

EXFOR 23077.001

ENTRY	23077 20110128		23077000	1		
SUBENT	23077001 20110128		23077001	1		
BIB	12 73		23077001	2		
TITLE	The total cross section and res	onance parameters for	23077001	3		
	the 0.178 eV resonance of 1130	'd	23077001	4		
AUTHOR	(S.Kopecky, I.Ivanov, M.Moxon,	P.Schillebeeckx,	23077001	5		
	P.Siegler, I.Sirakov)		23077001	6		
INSTITUTE	(2ZZZGEL)		23077001	7		
	(2UK UK) Hyde Copse, Marcham (M	23077001	8			
REFERENCE	(J,NIM/B,267,2345,2009)	23077001	9			
	(W,KOPECKY,2009) EXFOR coding sheet prepared at Geel					
REL-REF	(I,,J.M.Salome+,J,NIM/A,179,13,	1981)	23077001	11		
	Details of GELINA facility		23077001	12		
	(I,,D.Tronc+,J,NIM/A,228,217,19	85)	23077001	13		
	Details of GELINA facility		23077001	14		
	(I,,M.Flaska+,J,NIM/A,531,392,2	004)	23077001	15		
	Details of neutron production		23077001	16		
FACILITY	(LINAC, 2ZZZGEL) GELINA		23077001	17		
INC-SOURCE	Diameter of neutron beam = 40 m	m	23077001	18		
	Time resolution of electron bea	m = 1 ns	23077001	19		
	(PHOTO) (g,n) on uranium target					
	(2 containers, 100 x 100 mm, 40 mm thick)					
	(THCOL) Water moderator		23077001	22		
SAMPLE	(48-CD-113,NAT=0.1222) 12.22% +	23077001	23			
	* Metal sample I					
	Physical type:	Metal	23077001	25		
	Chemical composition:	Element (Cadmium)	23077001	26		
	Purity of main element:	100%	23077001	27		
	Weight:	1.2814 +/- 0.0001 g	23077001	28		
	Weight per area:	0.02547 g/cm2	23077001	29		
	Diameter:	80.04 +/- 0.03 mm	23077001	30		
	Thickness:	0.030 mm (nominal)	23077001	31		
	Thickness of main element:	1.3643E-04 atom/b	23077001	32		
	Containment description:	No container	23077001	33		

SUBENT	23077002	2011012	28 201109	905 201109	02 222	:6						
BIB	9) 2	25									
REACTION	(48-CD-0(N,	TOT),,TRN)									
	#(48-CD-0(N	,TOT),,TRN) Quantity:	[CS] Transmi	ssion							
	# Pro	cess: [TOT]] Total									
SAMPLE	Metal samp	le I (0.03	3 mm)				Trang	smissi	on T			
INC-SPECT	EN gives neutron energy calculated with a flight path length of 26.464 m (MISC1) Width of time-of-flight bin					0.02 eV-4.8 eV,						
MISC-COL												
	(MISC2)	Uncorrelat	ted uncerta									
ERR-ANALY	5 - Overall a			25,288 data points								
		has to be					/EYE	OD 2	0.77 (1021		
- ERR-1 to ERR-4 gives "correlation vectors" in the (EXFOR 23077.002)												
AGS format.												
	(ERR-T) Total uncertainty (1 sigma)											
	(ERR-S) Uncorrelated uncertainty (1 sigma) (ERR-1) Correlation dead time correction (sample)											
	(ERR-1) Correlation dead time correction (sample) (ERR-2) Correlation background correction (sample)											
			-		(open beam)							
	(ERR-3) Correlation dead time correction (open beam) (ERR-4) Correlation background correction (open beam)											
COVARTANCE	E (CHLSK) Compiled in ERR-1 to ERR-4 in the AGS format											
REL-REF (N,,C.Bastian+,C,92BNL,,642,1992)												
Description of AGS format												
	(N,,C.Basti	an+,C,2006	SVANCOU,, ((013),2006)								
	Descriptio	n of AGS	format									
STATUS (TABLE) Data received from S.Kopecky by e-mail												
<en></en>	(A) TOF	ead by:	Stefan Kop	pecky (2011-	01-28)							
\LII/	(2)	ı. Recei	ived by e-r	nai m S								
(eV)	(nsec	:)	0	Т	$\Delta_{tot}T$	∆ _{stat} T		$\Delta_{\text{sys,1}}T$	$\Delta_{\text{sys,2}}$	T Δ _{sys,}	₃ T	
DATA	12	2528	38	12								
EN		TOF-MAX	MISC1	DATA	ERR-T	ERR-S	MISC2	ERR-1	ERR-2	ERR-3	ERR-4	
EV		NSEC	NSEC	NO-DIM	NO-DIM	NO-DIM	NO-DIM	NO-DIM	NO-DIM	NO-DIM	NO-DIM	
4.7993		873429.2	128.	1.1478	0.0665562	0.0665376					-51.28552E-3	
4.7979		873557.2	128.	0.97025		0.0563021					5 1.00913E-3	
4.79649		873685.2	128.	1.04716							-51.10425E-3	
4.79509		873813.2	128.	0.898725							-58.22937E-4	
4.79368		873941.2	128.	1.03868	0.0579569						-51.03134E-3	
4.79228		874069.2	128.	1.05707	0.0591457	0.0591305					5 1.06353E-3	
4.79088		874197.2	128.	1.06048	0.0608753	0.0608588					-51.12341E-3	
4.78947	874197.2	874325.2	128.	1.06846	0.0605227	0.0605067	3.66106E-3	3 1.24478E-5	-8.43675E-	-4-1.29684E	-51.10621E-3	

Uncertainties than covariance in EXFOR?

A Small Guide to Generating Covariances of Experimental Data

Wolf Mennhert

Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

May 201

IAEA Nuclear Data Section, Vienna International Centre, A-1400 Vienna, Austria

W. Mannhart,
"A Small Guide to Generating
Covariances
of Experimental Data"
INDC(NDS)-0588 (2010)

F Summary

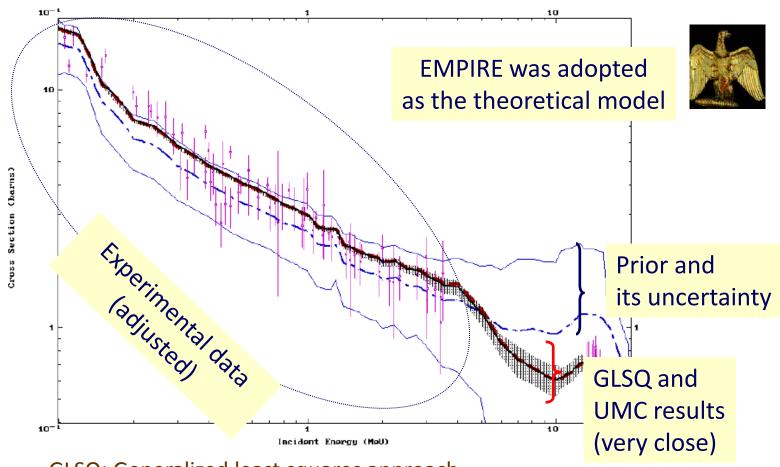
A complete description of the uncertainties of an experiment can only be realized by a detailed list of all the uncertainty components, their value *and* a specification of existing correlations between the data. Based on such information the covariance matrix can be generated, which is necessary for any further proceeding with the experimental data. It is not necessary, and *not recommended*, that an experimenter evaluates this covariance matrix. The reason for this is that a incorrectly evaluated final covariance matrix can never be corrected if the details are not given. (Such obviously wrong covariance matrices have recently occasionally been found in the literature). Hence quotation of a covariance

... Detailed list of all the uncertainty components, their value and a specification of existing correlations rather than the covariance matrix....

... A incorrectly evaluated final covariance matrix can never be corrected if the details are not given...

Publication of experimental full covariance must be reported with their derivation from partial uncertainties.

Evaluation with model covariances

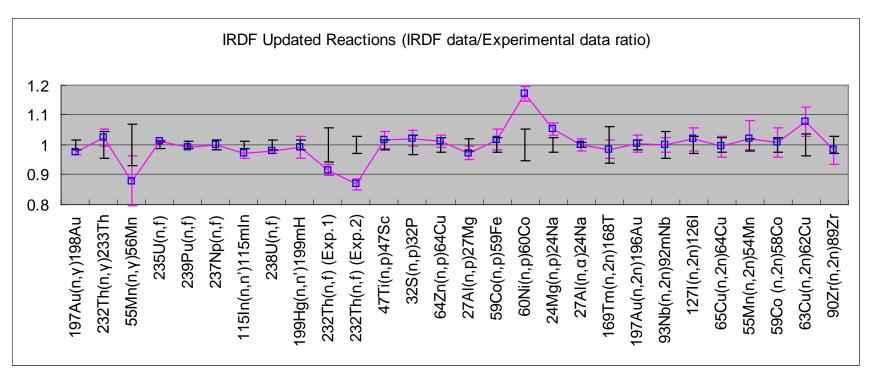

(Roberto Capote)

Basic equation of evaluation σ from experiments and calculations

$$p(\vec{\sigma}) \sim \exp[-1/2\{(y-y_{\rm exp})^T V_{\rm exp}^{-1} (y-y_{\rm exp}) + (\sigma-\sigma_{\rm cal})^T V_{\rm cal}^{-1} (\sigma-\sigma_{\rm cal})\}] = \exp[(-1/2)S]$$

maximum of entropy \Leftrightarrow minimum of S
How we can obtain evaluated mean values and covariances?

- GLSQ (Generalized least-squares analysis deterministic)
 Generalized least-square fit where model covariance is defined as a prior; uses sensitivity matrices.
- Stochastic methods (e.g., Unified Monte Carlo approach)
 Repetition of model calculations with random sets of input parameters combined with stochastic samples from experimental pdf
- Hybrid methods (e.g., random model + GANDR least-squares fit)
 Repetition of model calculations with random sets of input parameters, combined with generalized least-squares fit to include experiments


GLSQ v.s. UMC 55Mn(n,γ)56Mn cross section

GLSQ: Generalized least squares approach

UMC: Unified Monte-Carlo

Covariance matrix validation ²⁵²Cf SPA XSs

(to be released as an updated IRDF Library at the end of 2011)

Evaluated data <u>and uncertainty</u> (both covariances in evaluated cross sections and ²⁵²Cf reference neutron field are considered).

Experimental data uncertainty

Web tool for covariance visualization

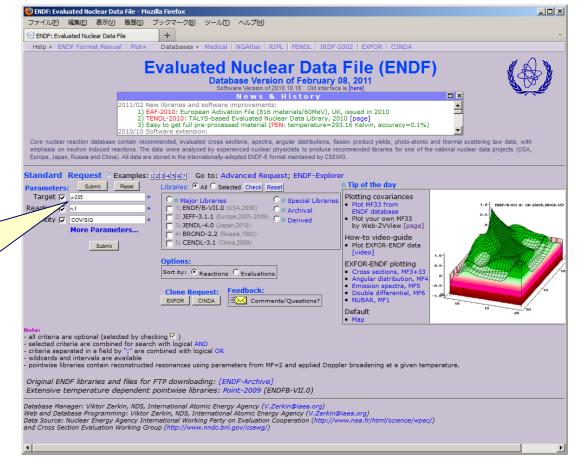
(Viktor Zerkin)

Creation of 2D or 3D plot from covariance matrices in nuclear data files are not a

simple task.

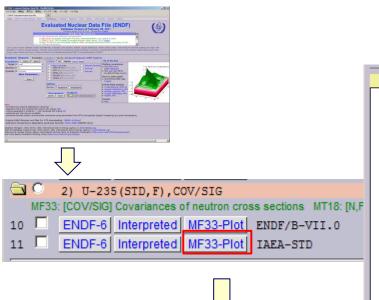
 \rightarrow

Web tool to plot covariance information

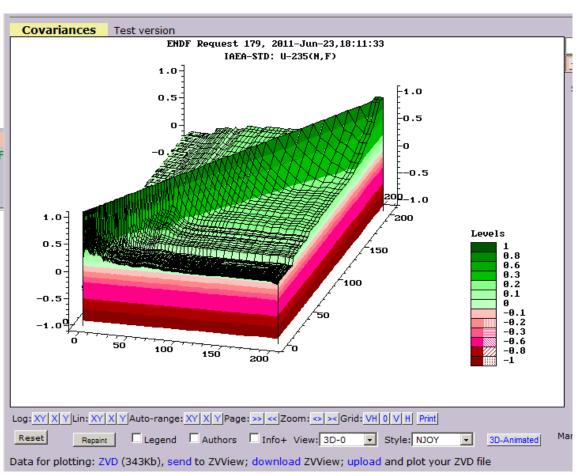

Target: U-235

Reaction: n,f

Quantity: COV/SIG


•••

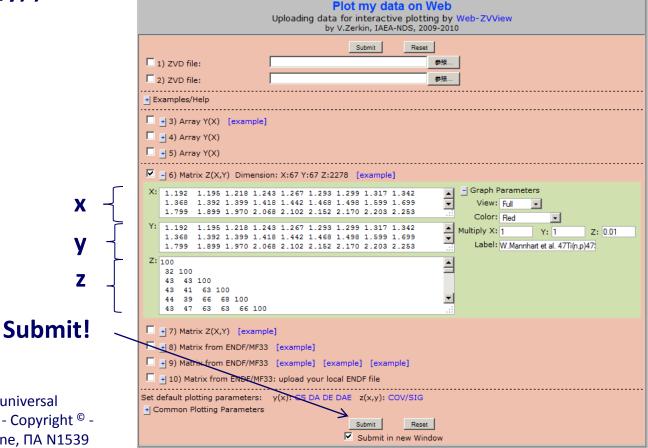
Then "Submit"



http://www-nds.iaea.org/endf/

Web tool for covariance visualization (cont)

²³⁵U(n,f) IAEA Standard MF33-Plot selected!



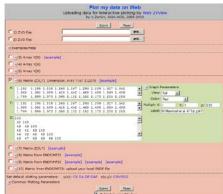
http://www-nds.iaea.org/endf/

Web tool for covariance visualization (cont)

Web-ZVView also helps plotting of your own covariance matrix

(or any function Z(x,y)).

The ZVView package is based on the universal graphics library DINAMO® *DINAMO - Copyright® - 1998, Viktor Zerkin, registered: Ukraine, ΠΑ N1539


http://www-nds.iaea.org/exfor/myplot.html

Web tool for covariance visualization (cont)

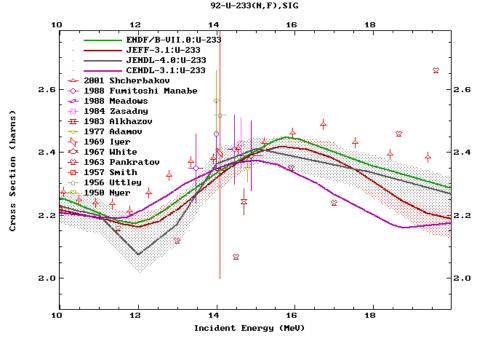
You can also visualize your covariance!

```
100
 32 100
     43 100
              68 100
```

⁴⁷Ti(n,p)⁴⁷Sc covariance by W.Mannhart et al. (1980).

The ZVView package is based on the universal graphics library DINAMO[©] *DINAMO - Copyright [©] -1998, Viktor Zerkin, registered: Ukraine, ΠΑ N1539

http://www-nds.iaea.org/exfor/myplot.html


Summary

 Experimenters and EXFOR compilers are urged to provide more information about experimental uncertainties and covariances.

How much detail of uncertainty information is necessary? It is still an

open question (for me).

 Development of several data libraries (ENDF, JENDL, CENDL, etc.) with their covariances may keep our knowledge of cross sections in a healthy condition.

²³³U(n,f), 10 MeV – 20 MeV