The 1st Asian Nuclear Reaction Database Development Workshop (AASPP Workshop), Sapporo, Japan, Oct 25-29, 2010

Activation cross-sections of ion beam induced nuclear reactions on iron

Kwangsoo Kim^{1‡}, M.U. Khandaker¹, Kyung-Sook Kim¹, Manwoo Lee¹, Y-S. Cho², Y-O. Lee², Guinyun Kim^{1*}

¹Department of Physics, Kyungpook National University, 1370 Sankyok-dong, Buk-gu, Daegu 702-701, Korea ²Nuclear Data Evaluation Laboratory, Korea Atomic Energy Research Institute, 150-1 Duckjin-dong, Yusung-gu, Daejeon 305-600, Korea

Contents:

- 1. Introduction
- 2. Experimental procedure
- 3. Results and discussion
- 4. Conclusions

1. Introduction

We measured the production cross-sections of ^{52,54,56}Mn, ^{55,56,57,58}Co, and ⁵¹Cr radionuclides from 11-38 MeV deuteron-induced reactions on natural iron at the AVF Cyclotron of the Cyclotron and Radioisotope Center, Tohoku University.

In addition, We measured the production cross-sections of ^{52,54}Mn, ^{55,56,57}Co, and ⁵¹Cr radionuclides from 8-40 MeV proton-induced reactions on natural iron and the production cross-sections of ⁵⁶Mn, ^{55,56,57,58,61}Co, and ^{56,57}Ni radionuclides from 3-43 MeV alpha-induced reactions on natural iron at the MC50 cyclotron of the Korea Institute of Radiological and Medical Sciences.

The results are compared with the available literature values as well as the theoretical data calculated by the TALYS codes. The thick target integral yields were also deduced using the measured cross-sections of the produced radionuclides. In the investigated energy region, the present results are in generally good agreement with the earlier reported data and with the calculated data. Activatin cross-sections of ion Beam induced nuclear.....by K. S. KIM

The stacks were designed to meet the following requirements:

- to measure "independent & cumulative cross-sections" of Fe as a function of incident beam energy.
- **to provide overlapping energy regions** by arranging several stacks to complement each other.
- to determine the proton flux inside the stack via monitor reactions using Copper and Alumunum foils.
- to avoid any recoil contamination or recoil loss of produced nuclides by covering each measured foil with thin catcher-foils.

MC 50 Cyclotron

Proton Beam Energy	maximum	This work	
	50 MeV	45 MeV	
Current	60µA	100nA	

AVF Cyclotron in CYRIC

Deuteron Beam Energy	maximum	This work	
	65 MeV	40 MeV	
Current	50µA	100nA	

The gamma-ray spectrometry

Oct 25-29, 2010, AASPP Workshop, Sapporo, Japan.

Gamma-ray spectrometry and Standard Sources

Nuclide	Half-life	Energy	Activity
¹⁰⁹ Cd	462.6d	88.0336 keV	123.7 kBq
⁵⁷ Co	271.79d	122.06065 / 136.47350 keV	53.2 kBq
¹³⁷ Cs	30.07y	661.657 keV	370.2 kBq
⁵⁴ Mn	312.1 d	834.841 keV	6.9 kBq
⁶⁰ Co	5.27 y	1173.228 / 1332.490 keV	266.3 kBq
²² Na	2.6019 y	1274.537 keV 219.1 kBq	

Calculations of Produced Activity

$A = 6.24 \times 10^{18} \times I \times (t/z) \times N \times \sigma (1 - e^{-\lambda t_{irr}})$

- A = Absolute activity of isotope ^{A+1}Z in sample
- N = Number of atoms of target isotope ^AZ in sample
- σ = Capture cross section (cm²) for target isotope ^AZ
- λ = Radioactive decay constant (s⁻¹) for isotope ^{A+1}Z
- t_{irr} = Irradiation time (s)
- I = Beam current (Amp)
- *t* = Thickness of the sample (cm)
- z = Charge number of the bombarding particle

After a delay of time t_d ; $A = 6.24 \times 10^{18} \times I \times (t/z) \times N \times \sigma (1 - e^{-\lambda t_{irr}}) \exp(-\lambda t_d)$

For a counting time of t_c ; $A = 6.24 \times 10^{18} \times I \times (t/z) \times N \times \sigma (1 - e^{-\lambda t_{irr}}) \exp(-\lambda t_d) [1 - \exp(-\lambda t_c)]$

Calculation of proton beam energy degradation

http://www.srim.org

- SRIM(The Stopping and Range of Ions in Matter) : Monte Carlo Transport Calculation
- Calculate the stopping and range of ions

Determination of efficiencies of HPGe detector

Decay data for the produced radionuclides

Nuclide	Half-life	Decay mode	E _γ (keV)	Ι _γ (%)	Contributing reaction	Q-value (MeV)	E _{th} (MeV)
⁵¹ Cr	27.7 d	EC	320.1	10.0	⁵⁶ Fe(p, ⁶ Li) ⁵¹ Cr	-15.59	16.24
				75	54 Fe(p, $\alpha 2p){}^{51}$ Cr	-27.45	28.00
⁵⁵ Co	17.54 h	EC	477	20.0	⁵⁴ Fe(p, γ) ⁵⁵ Co	5.06	0.00
			931.3	75	⁵⁶ Fe(p, 2n) ⁵⁵ Co	-15.43	15.71
			1408.4	16.88	⁵⁷ Fe(p, 3n) ⁵⁵ Co	-23.08	23.49
					⁵⁸ Fe(p, 4n) ⁵⁵ Co	-33.12	33.70
⁵⁶ Co	77.3 d	EC	846.7	99.99	⁵⁶ Fe(p, n) ⁵⁶ Co	-5.35	5.44
			1037.8	14.13	⁵⁷ Fe(p, 2n) ⁵⁶ Co	-12.99	13.22
			1238.3	66.1	⁵⁸ Fe(p, 3n) ⁵⁶ Co	-23.04	23.44
⁵⁷ Co	271 d	EC	122.13	85.6	⁵⁶ Fe(p, γ) ⁵⁷ Co	6.03	0.00
			136.4	10.68			
⁵² Mn	5.59 d	EC	744.23	90	⁵⁴ Fe(p, 2pn) ⁵² Mn	-20.91	21.30
			935.54	94.5	⁵⁶ Fe(p, αn) ⁵² Mn	-13.11	13.34
			1434.09	100	57 Fe(p, $\alpha 2n$)) 52 Mn	-20.75	21.12
					⁵⁸ Fe(p, α3n) ⁵² Mn	-30.80	31.33
⁵⁴ Mn	312.3 d	EC	834.85	99.98	57 Fe(p, α) 54 Mn	-1.1	1.1

Nuclide	Half-life	$\mathbf{E}_{\gamma}(\mathbf{keV})$	$I_{\gamma}(\%)$	Contributing reaction	Q-value (MeV)	E _{th} (MeV)
⁵¹ Cr	27.70 d	320.082	10	56 Fe(d, α t) 51 Cr	-13.395	13.877
				54 Fe(d, αp) 51 Cr	-1.381	1.433
⁵² Mn	5.591 d	744.233	90.0	57 Fe(d, α 3n) 52 Mn	-22.977	23.790
		935.538	94.5	56 Fe(d, $\alpha 2n$) 52 Mn	-15.331	15.883
				54 Fe(d, α) 52 Mn	5.163	0.0
⁵⁴ Mn	312.3 d	834.848	99.976	57 Fe(d, α n) 54 Mn	-1.985	2.055
				56 Fe(d, α) 54 Mn	5.660	0.0
				⁵⁴ Fe(d,2p) ⁵⁴ Mn	-2.139	2.219
⁵⁵ Co	17.53 h	477.2	20.2	⁵⁶ Fe(d,3n) ⁵⁵ Co	-17.656	18.291
		931.3	75	⁵⁴ Fe(d,n) ⁵⁵ Co	2.839	0.0
		1408.4				
⁵⁶ Co	77.27 d	846.771	100	⁵⁷ Fe(d,3n) ⁵⁶ Co	-15.219	15.757
		1037.840	13.99	⁵⁶ Fe(d,2n) ⁵⁶ Co	-7.572	7.845
⁵⁷ Co	271.79 d	122.06	85.60	⁵⁷ Fe(d,2n) ⁵⁷ Co	-3.842	3.978
		136.47	10.68	⁵⁶ Fe(d,n) ⁵⁷ Co	3.803	0.0
⁵⁸ Co	70.86 d	810.775	99	⁵⁷ Fe(d,n) ⁵⁸ Co	4.730	0.0
				⁵⁶ Fe(d,γ) ⁵⁸ Co	12.376	0.0

Nuclide	Half-life	E _y (keV)	I _γ (%)	Reaction	Q-value(MeV)	Threshold(MeV)
⁵⁶ Mn	2.5785h	846.771	98.9	⁵⁶ Fe(a,n3p)	-31.208	33.442
		1810.772	27.2	⁵⁷ Fe(a,2n3p)	-38.855	41.586
55Co	17.53h	477.2	20.2	⁵⁴ Fe(a,2np)	-23.231	24.955
		931.3	75	⁵⁶ Fe(a,4np)	-43.727	46.856
		1316.4	7.09	⁵⁵ Ni decay		
		14.08.4	16.88			
⁵⁶ Co	77.27d	846.771	100	54 Fe(a,np)	-13.148	14.124
		1037.84	13.9	56 Fe(a,3np)	-33.644	36.051
		1238.282	67.6	⁵⁷ Fe(a,4np)	-41.290	44.192
		1771.351	15.69	⁵⁶ Ni decay		
57Co	271.79d	122.0614	85.60	⁵⁴ Fe(a,p)	-1.772	1.903
		136.4743	10.68	56 Fe(a.2np)	-22.267	23.861
				57Fe(a,3np)	-29.913	32.016
				58Fe(a.4np)	-39.958	42.719
				⁵⁷ Ni decay		
58Co	70.86d	810.775	99.03	⁵⁶ Fe(a.np)	-13.694	14.674
				57Fe(a.2np)	-21.340	22.841
				58Fe(a,3np)	-31.385	33.553
⁶¹ C0	1.650h	67.85	85	⁵⁸ Fe(a,p)	-4.119	4.403
		908.631	3.6			
⁵⁶ Ni	6.077d	158.38	98.8	54 Fe(a,2n)	-16.066	17.258
		269.350	36.5	⁵⁶ Fe(a,4n)	-36.562	39.178
		480.44	36.5	⁵⁷ Fe(a.5n)	-44.208	47.315
		749.95	49.5			
		811.85	86.0			
		1561.80	14.0			
⁵⁷ Ni	36.60h	127.164	16.7	54 Fe(a.n)	-5.816	6.248
		1377.63	81.7	⁵⁶ Fe(a,3n)	-26.312	28.195
		1757.55	5.75	⁵⁷ Fe(a.4n)	-33.958	36.345
				58 Fe(a,5n)	-44.003	47.043

Oct 25-29, 2010, AASPP Workshop, Sapporo, Japan.

Identifications of gamma-ray peak

Oct 25-29, 2010, AASPP Workshop, Sapporo, Japan.

Identifications of gamma-ray peak

Oct 25-29, 2010, AASPP Workshop, Sapporo, Japan.

Formula of Cross sections calculations

Reaction Rate

Cross-Sections

Oct 25-29, 2010, AASPP Workshop, Sapporo, Japan.

Deduction of Integral Yield

$$Y = I_p . N_d . \int_{0}^{E} \frac{\sigma(E)}{\left(\frac{dE}{dx}\right)_E} . dE \times \lambda$$

$$I_{p} = Proton flux (p/cm2-sec)$$

$$N_{d} = Number density (atoms/cm3)$$

$$\sigma(E) = Cross-sections (cm2)$$

$$(dE/dx)_{E} = Stopping power (MeV/cm)$$

$$dE = E_{in}-E_{out}: energy difference$$

$$\lambda = Decay constant$$

3. Results and discussion

http://www-nds.iaea.org/exfor/exfor.htm

Excitation functions of the measured radionuclides(Proton)

Oct 25-29, 2010, AASPP Workshop, Sapporo, Japan.

Excitation functions of the measured radionuclides(Proton)

Oct 25-29, 2010, AASPP Workshop, Sapporo, Japan.

Excitation functions of the measured radionuclides(Deuteron)

Oct 25-29, 2010, AASPP Workshop, Sapporo, Japan.

Excitation functions of the measured radionuclides(Deuteron)

Oct 25-29, 2010, AASPP Workshop, Sapporo, Japan.

Excitation functions of the measured radionuclides(Alpha)

Oct 25-29, 2010, AASPP Workshop, Sapporo, Japan.

Oct 25-29, 2010, AASPP Workshop, Sapporo, Japan.

4. Conclusions

- We measured the production cross-sections of ^{52,54,56}Mn, ^{55,56,57,58}Co, and ⁵¹Cr radionuclides from 11-38 MeV deuteron-induced reactions on natural iron at the AVF Cyclotron of the Cyclotron and Radioisotope Center, Tohoku University.
- In addition, We measured the production cross-sections of ^{52,54}Mn, ^{55,56,57}Co, and ⁵¹Cr radionuclides from 8-40 MeV proton-induced reactions on natural iron and the production cross-sections of ⁵⁶Mn, ^{55,56,57,58,61}Co, and ^{56,57}Ni radionuclides from 3-43 MeV alpha-induced reactions on natural iron at the MC50 cyclotron of the Korea Institute of Radiological and Medical Sciences.
- The results are compared with the available literature values as well as the theoretical data calculated by the TALYS codes.
- The thick target integral yields were also deduced using the measured crosssections of the produced radionuclides.

The end

Thank you감사합니다ありがとうございます