長寿命核分裂生成物の核データとデータベース

Nuclear data and database for transmutation of long-lived fission products

北海道大学大学院理学研究院 合川 正幸、江幡 修一郎¹、ダグワドルジ イチンホルロー

AIKAWA Masayuki, EBATA Shuichiro, DAGVADORJ Ichinkhorloo Faculty of Science, Hokkaido University

Abstract

We promote the project "Nuclear Reaction Data Compilation" as a part of the Impulsing Paradigm Change through Disruptive Technologies Program (ImPACT) "Reduction and Resource Recycling of High-level Radioactive Wastes through Nuclear Transmutation". Our activity in Japanese fiscal year 2017 is reported.

1 はじめに

革新的研究開発プログラム(ImPACT)「核変換による高レベル放射性廃棄物の大幅な低減・資源化」(藤田玲子プログラムマネージャー)[1] において、核変換に関する各種物理量(核データ)のデータベース化は必要不可欠である。このプログラムでは複数のプロジェクトが同時に進行しており、プロジェクト 2「核反応データ取得&新核反応制御法」では核データ取得実験を、プロジェクト 3「反応理論モデルとシミュレーション」では理論計算やシミュレーションを実施している。

我々のグループでは、プロジェクト2とプロジェクト3を結びつける核データのデータベース化を 実施している。2017年度は下記5項目を実施した。

- 1. 実験情報の収集・データ入力
- 2. 過去のデータ調査・入力
- 3. 新形式の開発
- 4. 検索・利用システム開発・テスト
- 5. 核データ取得手法の研究

それぞれの項目に関する今年度の成果を報告する。

¹現所属:東京工業大学 環境・社会理工学院

2 成果概要

2.1 実験情報の収集・データ入力

プロジェクト 2 の成果として論文発表された 93Zr の実験データ [2] を、国際原子力機関(IAEA)が管理するデータベース EXFOR への登録手続きを行った。また、そのデータを検索システムに反映した。作業手順は下記のとおりである。

- 1. 論文発表以前に著者から数値データ受領
- 2. 論文発表後、EXFOR 登録番号(E2539) 割り当て
- 3. 実験情報を含む EXFOR 形式のファイル暫定版を作成
- 4. IAEA 及び国際核反応データセンターネットワーク(NRDC)へ EXFOR ファイル暫定版を送信
- 5. IAEA 及び NRDC の形式チェックに基づく修正コメント受領
- 6. 受領したコメントに基づいて暫定版を修正し、EXFOR ファイル確定版作成
- 7. EXFOR ファイル確定版を IAEA 及び NRDC に送信
- 8. IAEA の Web サイト上で EXFOR ファイル確定版を共有
- 9. 北大グループの Web サイト (http://www.jcprg.org/) 及び検索システム (http://www.jcprg.org/exfor/) で公開 (図 1,2)
- 一連の作業により、Web サイト上でダウンロード及び検索・作図が可能になった(図 3,4)。 一方で、論文として発表される前の暫定的なデータは公開できないため、筑波大学のサーバ上でプログラム内のメンバーのみで共有した。

2.2 過去のデータ調査・入力

プロジェクト 2 で測定した 107 Pd 及び 93 Zr の実験データ情報を追加した(図 5,6)。これにより平成 29 年度までに発表されているデータの調査が終了した。

2.3 新形式の開発

プロジェクト 2 で成果として論文発表された ^{107}Pd 及び ^{93}Zr 、それぞれの核データを、PHITS の Frag Data 形式で作成した(図 7)。Frag Data 形式では、生成核種の生成断面積と二重微分断面積を テーブル化する必要がある。重い生成核種の生成断面積は実験値を用い、軽核(陽子、中性子、重陽子、 α 粒子)の二重微分断面積は PHITS の計算値を用いた(図 8)。

2.4 検索・利用システム開発・テスト

プロジェクト 2 で測定した 107 Pd 及び 93 Zr の実験データ情報を追加した。これにより、 107 Pd 及び 93 Zr のデータが検索可能になった(図 $^{9.10}$)。

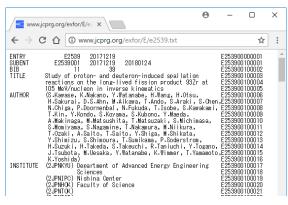


図 1: EXFOR 形式のファイル (E2539)

 $(\rm http://www.jcprg.org/exfor/E/e2539.txt)$

図 2: EXFOR 検索サイト (http://www.jcprg.org/exfor/)

図 3: ⁹³Zr の検索結果

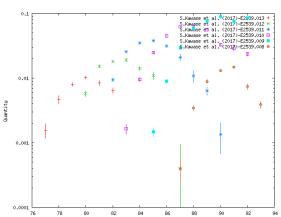


図 4: 検索結果から図示した断面積

2.5 核データ取得手法の研究

我々のグループが提案した相互作用断面積の測定手法(Thick-Target Transmission 法(T3 法)) [3] に関して、Frag Data を用いた PHITS[4] のシミュレーションを、実験データが得られた ^{107}Pd 及び ^{93}Zr について実施した。

3 まとめ

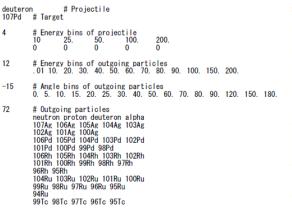
革新的研究開発プログラム「核変換による高レベル放射性廃棄物の大幅な低減・資源化」(藤田玲子プロジェクトマネージャー)において、核反応データベースに関する研究開発を実施している。長寿命核分裂生成物 4 核種(79 Se、 93 Zr、 107 Pd、 135 Cs)に関して、(1) 実験情報の収集と測定データの入力、(2) 過去のデータ調査と入力、(3)PHITS シミュレーションで実験データを用いるための新

形式の開発、(4) 検索・利用システム開発及びテスト、(5) より効率的な核反応データ取得手法の計 5 項目を担当した。本稿では、これらの項目について 2017 年度の進捗を報告した。

謝辞

本研究は、総合科学技術・イノベーション会議が主導する 革新的研究開発推進プログラム (ImPACT) の一環として実施したものです。

参考文献


- [1] 革新的研究開発プログラム(ImPACT)「核変換による高レベル放射性廃棄物の大幅な低減・資源化」(藤田玲子プログラムマネージャー), http://www.jst.go.jp/impact/program/08.html
- [2] S. Kawase et al., "Study of proton- and deuteron-induced spallation reactions on the long-lived fission product 93 Zr at 105 MeV/nucleon in inverse kinematics", Prog. Theor. Exp. Phys. 2017, 093D03
- [3] M. Aikawa et al., "Thick-target transmission method for excitation functions of interaction cross sections", Nucl. Instr. Meth. B383 (2016) 156.
- [4] T. Sato, et al., "Particle and Heavy Ion Transport Code System PHITS, Version 2.52", J. Nucl. Sci. Technol. 50 (2013) 913.

Projectile	#	Reaction	Refeference	Data.ID#
Gamma	0(1)	93Zr(y,ABS)	Theo: 3D Skyrme Cb-TDFHB	093ZrSE.01
Neutron	8	93Zr(N,y)94Zr	Phys. Rev. C87 (2013) 014622	23194.009
			J. Nucl. Sci. Technol. 44 (2007) 21	14132.003
			Book: Atlas of Neutron Resonances 2006 (NEUT.RES)	V1001.374, V1001.375, V1001.376
			At. Data Nucl. Data Tables 76 (2000) 70	V0102.163
			Semiannual Progress Rep. ORNL 1879 (1955) 50	11885.002
		(Resonance prop.)	Nuclear Science and Engineering 92 (1986) 525	12923.002
		(Resonance prop.)	Astrophysics and Space Science 115 (1985) 71	12915.002
		(Resonance prop.)	Semiannual Progress Rep. ORNL 2610 (1958) 22	12012.003
Proton	1	93Zr(p,x)	Prog. Theor. Exp. Phys. 2017 (2017) 093D03	E2539.002-007
Deuteron	1	93Zr(d,x)	Prog. Theor. Exp. Phys. 2017 (2017) 093D03	E2539.008-013
⁴ He	0	-	-	-
12 _C	0	_	_	-

図 5: ¹⁰⁷Pd の反応に関する核データ一覧

図 6: ⁹³Zr の反応に関する核データ一覧

の定義部分

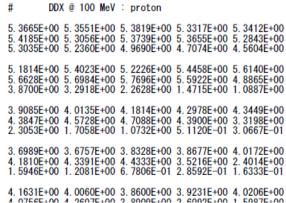


図 7: 107Pd+d 反応の Frag Data 入力データ 図 8: 107Pd+d 反応の Frag Data 入力データ の二重微分断面積部分

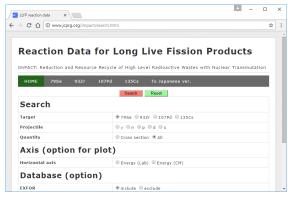


図 9: 検索サイト

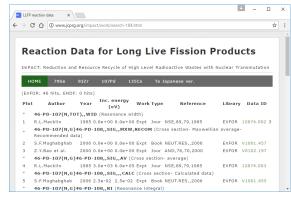


図 10: 検索結果