DARPE: Search Results
Entry No. D1886

M.Itoh1, H.Sakaguchi1, M.Uchida1, T.Ishikawa1, T.Kawabata1, T.Murakami1, H.Takeda1, T.Taki1, S.Terashima1, N.Tsukahara1, Y.Yasuda1, M.Yosoi1, U.Garg2, M.Hedden2, B.Kharraja2, M.Koss2, B.K.Nayak2, S.Zhu2, H.Fujimura3, M.Fujiwara3,4, K.Hara3, H.P.Yoshida3, H.Akimune5, M.N.Harakeh6, M.Volkerts6
Kyoto Univ.1
University of Notre Dame, Notre Dame, IN2
Research Center for Nuclear Physics, Osaka Univ, Osaka3
Japan Atomic Research Institute (JAERI4
Konan Univ., Kobe5
error6
Physical Review, Part C, Nuclear Physics68(2003)064602


Systematic study of L<=3 giant resonances in Sm isotopes via multipole decomposition analysis

Click on the data number to see the plot. Or select the box to plot multiple data.
DataFilePhysical quantitiesReaction(s)Energies
1 *EXC-ENGY DSIGMA/DOMEGA/DE
DSIGMA/DOMEGA/DE: d2sigma/dOmega/dE #1; EXC-ENGY: Excitation energy (of the final state) #2
144SM(ALPHA,ALPHA)144SM; 386 MEV
2 *EXC-ENGY DSIGMA/DOMEGA/DE
DSIGMA/DOMEGA/DE: d2sigma/dOmega/dE #1; EXC-ENGY: Excitation energy (of the final state) #2
148SM(ALPHA,ALPHA)148SM; 386 MEV
3 *EXC-ENGY DSIGMA/DOMEGA/DE
DSIGMA/DOMEGA/DE: d2sigma/dOmega/dE #1; EXC-ENGY: Excitation energy (of the final state) #2
150SM(ALPHA,ALPHA)150SM; 386 MEV
4 *EXC-ENGY DSIGMA/DOMEGA/DE
DSIGMA/DOMEGA/DE: d2sigma/dOmega/dE #1; EXC-ENGY: Excitation energy (of the final state) #2
152SM(ALPHA,ALPHA)152SM; 386 MEV
5 *EXC-ENGY DSIGMA/DOMEGA/DE
DSIGMA/DOMEGA/DE: d2sigma/dOmega/dE #1; EXC-ENGY: Excitation energy (of the final state) #2
154SM(ALPHA,ALPHA)154SM; 386 MEV
6 *THTC DSIGMA/DOMEGA
DSIGMA/DOMEGA: dsigma/dOmega #1; THTC: Scattering angle theta in c.m. system #4
144SM(ALPHA,ALPHA)144SM; 386 MEV
7 *EXC-ENGY THTC DSIGMA/DOMEGA/DE
DSIGMA/DOMEGA/DE: d2sigma/dOmega/dE #1; EXC-ENGY: Excitation energy (of the final state) #2; THTC: Scattering angle theta in c.m. system #4
144SM(ALPHA,ALPHA)144SM; 386 MEV
8 *
144SM(ALPHA,ALPHA)144SM,148SM(ALPHA,ALPHA)148SM,150SM(ALPHA,ALPHA)150SM,152SM(ALPHA,ALPHA)152SM,154SM(ALPHA,ALPHA)154SM
9 *
144SM(ALPHA,ALPHA)144SM,148SM(ALPHA,ALPHA)148SM,150SM(ALPHA,ALPHA)150SM,152SM(ALPHA,ALPHA)152SM,154SM(ALPHA,ALPHA)154SM
10 *EXC-ENGY THTC DSIGMA/DOMEGA/DE
DSIGMA/DOMEGA/DE: d2sigma/dOmega/dE #1; EXC-ENGY: Excitation energy (of the final state) #2; THTC: Scattering angle theta in c.m. system #4
148SM(ALPHA,ALPHA)148SM; 386 MEV
11 *
144SM(ALPHA,ALPHA)144SM,148SM(ALPHA,ALPHA)148SM,150SM(ALPHA,ALPHA)150SM,152SM(ALPHA,ALPHA)152SM,154SM(ALPHA,ALPHA)154SM
12 *
144SM(ALPHA,ALPHA)144SM,148SM(ALPHA,ALPHA)148SM,150SM(ALPHA,ALPHA)150SM,152SM(ALPHA,ALPHA)152SM,154SM(ALPHA,ALPHA)154SM
13 *EXC-ENGY THTC DSIGMA/DOMEGA/DE
DSIGMA/DOMEGA/DE: d2sigma/dOmega/dE #1; EXC-ENGY: Excitation energy (of the final state) #2; THTC: Scattering angle theta in c.m. system #4
150SM(ALPHA,ALPHA)150SM; 386 MEV
14 *
144SM(ALPHA,ALPHA)144SM,148SM(ALPHA,ALPHA)148SM,150SM(ALPHA,ALPHA)150SM,152SM(ALPHA,ALPHA)152SM,154SM(ALPHA,ALPHA)154SM
15 *
144SM(ALPHA,ALPHA)144SM,148SM(ALPHA,ALPHA)148SM,150SM(ALPHA,ALPHA)150SM,152SM(ALPHA,ALPHA)152SM,154SM(ALPHA,ALPHA)154SM
16 *EXC-ENGY THTC DSIGMA/DOMEGA/DE
DSIGMA/DOMEGA/DE: d2sigma/dOmega/dE #1; EXC-ENGY: Excitation energy (of the final state) #2; THTC: Scattering angle theta in c.m. system #4
152SM(ALPHA,ALPHA)152SM; 386 MEV
17 *
144SM(ALPHA,ALPHA)144SM,148SM(ALPHA,ALPHA)148SM,150SM(ALPHA,ALPHA)150SM,152SM(ALPHA,ALPHA)152SM,154SM(ALPHA,ALPHA)154SM
18 *
144SM(ALPHA,ALPHA)144SM,148SM(ALPHA,ALPHA)148SM,150SM(ALPHA,ALPHA)150SM,152SM(ALPHA,ALPHA)152SM,154SM(ALPHA,ALPHA)154SM
19 *EXC-ENGY THTC DSIGMA/DOMEGA/DE
DSIGMA/DOMEGA/DE: d2sigma/dOmega/dE #1; EXC-ENGY: Excitation energy (of the final state) #2; THTC: Scattering angle theta in c.m. system #4
154SM(ALPHA,ALPHA)154SM; 386 MEV
20 *
144SM(ALPHA,ALPHA)144SM,148SM(ALPHA,ALPHA)148SM,150SM(ALPHA,ALPHA)150SM,152SM(ALPHA,ALPHA)152SM,154SM(ALPHA,ALPHA)154SM
21 *
144SM(ALPHA,ALPHA)144SM,148SM(ALPHA,ALPHA)148SM,150SM(ALPHA,ALPHA)150SM,152SM(ALPHA,ALPHA)152SM,154SM(ALPHA,ALPHA)154SM
22 *EXC-ENGY STRGTH-FUNCT17)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
144SM(ALPHA,ALPHA)144SM; 386 MEV
23 *EXC-ENGY STRGTH-FUNCT18)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
144SM(ALPHA,ALPHA)144SM; 386 MEV
24 *EXC-ENGY STRGTH-FUNCT19)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
144SM(ALPHA,ALPHA)144SM; 386 MEV
25 *EXC-ENGY STRGTH-FUNCT20)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
144SM(ALPHA,ALPHA)144SM; 386 MEV
26 *EXC-ENGY STRGTH-FUNCT21)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
148SM(ALPHA,ALPHA)148SM; 386 MEV
27 *EXC-ENGY STRGTH-FUNCT22)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
148SM(ALPHA,ALPHA)148SM; 386 MEV
28 *EXC-ENGY STRGTH-FUNCT23)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
148SM(ALPHA,ALPHA)148SM; 386 MEV
29 *EXC-ENGY STRGTH-FUNCT24)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
148SM(ALPHA,ALPHA)148SM; 386 MEV
30 *EXC-ENGY STRGTH-FUNCT25)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
150SM(ALPHA,ALPHA)150SM; 386 MEV
31 *EXC-ENGY STRGTH-FUNCT26)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
150SM(ALPHA,ALPHA)150SM; 386 MEV
32 *EXC-ENGY STRGTH-FUNCT27)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
150SM(ALPHA,ALPHA)150SM; 386 MEV
33 *EXC-ENGY STRGTH-FUNCT28)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
150SM(ALPHA,ALPHA)150SM; 386 MEV
34 *EXC-ENGY STRGTH-FUNCT29)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
152SM(ALPHA,ALPHA)152SM; 386 MEV
35 *EXC-ENGY STRGTH-FUNCT30)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
152SM(ALPHA,ALPHA)152SM; 386 MEV
36 *EXC-ENGY STRGTH-FUNCT31)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
152SM(ALPHA,ALPHA)152SM; 386 MEV
37 *EXC-ENGY STRGTH-FUNCT32)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
152SM(ALPHA,ALPHA)152SM; 386 MEV
38 *EXC-ENGY STRGTH-FUNCT35)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
154SM(ALPHA,ALPHA)154SM; 386 MEV
39 *EXC-ENGY STRGTH-FUNCT38)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
154SM(ALPHA,ALPHA)154SM; 386 MEV
40 *EXC-ENGY STRGTH-FUNCT39)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
154SM(ALPHA,ALPHA)154SM; 386 MEV
41 *EXC-ENGY STRGTH-FUNCT40)
EXC-ENGY: Excitation energy (of the final state) #2; STRGTH-FUNCT: Strength function
154SM(ALPHA,ALPHA)154SM; 386 MEV
42 *EXC-ENGY41) WDTH EWSR42) L FLAG43)
EWSR: Energy weighted sum rule; EXC-ENGY: Excitation energy (of the final state) #2; L: Orbital angular momentum; WDTH: Width
144SM(ALPHA,ALPHA)144SM; 386 MEV
43 *EXC-ENGY44) WDTH45) EWSR46) L FLAG47)
EWSR: Energy weighted sum rule; EXC-ENGY: Excitation energy (of the final state) #2; L: Orbital angular momentum; WDTH: Width
148SM(ALPHA,ALPHA)148SM; 386 MEV
44 *EXC-ENGY48) WDTH49) EWSR50) L FLAG51)
EWSR: Energy weighted sum rule; EXC-ENGY: Excitation energy (of the final state) #2; L: Orbital angular momentum; WDTH: Width
150SM(ALPHA,ALPHA)150SM; 386 MEV
45 *EXC-ENGY52) WDTH53) EWSR54) L FLAG55)
EWSR: Energy weighted sum rule; EXC-ENGY: Excitation energy (of the final state) #2; L: Orbital angular momentum; WDTH: Width
152SM(ALPHA,ALPHA)152SM; 386 MEV
46 *EXC-ENGY56) WDTH57) EWSR58) L FLAG59)
EWSR: Energy weighted sum rule; EXC-ENGY: Excitation energy (of the final state) #2; L: Orbital angular momentum; WDTH: Width
154SM(ALPHA,ALPHA)154SM; 386 MEV

17) L=0 (GMR) strength distribution obtained from the multipole-decomposition analysis.
18) L=2 (GQR) strength distribution obtained from the multipole-decomposition analysis.
19) L=1 (ISGDR) strength distribution obtained from the multipole-decomposition analysis.
20) L=3 (HEOR) strength distribution obtained from the multipole-decomposition analysis.
21) L=0 (GMR) strength distribution obtained from the multipole-decomposition analysis.
22) L=2 (GQR) strength distribution obtained from the multipole-decomposition analysis.
23) L=1 (ISGDR) strength distribution obtained from the multipole-decomposition analysis.
24) L=3 (HEOR) strength distribution obtained from the multipole-decomposition analysis.
25) L=0 (GMR) strength distribution obtained from the multipole-decomposition analysis.
26) L=2 (GQR) strength distribution obtained from the multipole-decomposition analysis.
27) L=1 (ISGDR) strength distribution obtained from the multipole-decomposition analysis.
28) L=3 (HEOR) strength distribution obtained from the multipole-decomposition analysis.
29) L=0 (GMR) strength distribution obtained from the multipole-decomposition analysis.
30) L=2 (GQR) strength distribution obtained from the multipole-decomposition analysis.
31) L=1 (ISGDR) strength distribution obtained from the multipole-decomposition analysis.
32) L=3 (HEOR) strength distribution obtained from the multipole-decomposition analysis.
35) L=0 (GMR) strength distribution obtained from the multipole-decomposition analysis.
38) L=2 (GQR) strength distribution obtained from the multipole-decomposition analysis.
39) L=1 (ISGDR) strength distribution obtained from the multipole-decomposition analysis.
40) L=3 (HEOR) strength distribution obtained from the multipole-decomposition analysis.
41) Peak energy for GMR (L=0) and GQR (L=2), centroid energy for ISGDR (L=1) and HEOR (L=3)
42) Obtained by integrating Breit-Wigner functions from 8 to respectively.
43)
44) Peak energy for GMR (L=0) and GQR (L=2), centroid energy for ISGDR (L=1) and HEOR (L=3)
45) Width in 144Sm for GMR and GQR
46) Obtained by integrating Breit-Wigner functions from 8 to respectively.
47)
48) Peak energy for GMR (L=0) and GQR (L=2), centroid energy for ISGDR (L=1) and HEOR (L=3)
49) Width in 144Sm for GMR and GQR
50) Obtained by integrating Breit-Wigner functions from 8 to respectively.
51)
52) Peak energy for GMR (L=0) and GQR (L=2), centroid energy for ISGDR (L=1) and HEOR (L=3)
53) Width in 144Sm for GMR and GQR
54) Obtained by integrating Breit-Wigner functions from 8 to respectively.
55)
56) Peak energy for GMR (L=0) and GQR (L=2), centroid energy for ISGDR (L=1) and HEOR (L=3)
57) Width in 144Sm for GMR and GQR
58) Obtained by integrating Breit-Wigner functions from 8 to respectively.
59)
Plot the data selected in THIS page:


Last update of this script: April 12, 2006. Contact address: darpe-admin@jcprg.org