Memo CP-D/201

9 January 1990

To:

Distribution

From:

O. Schwerer) plunce

Subject:

1) Dictionary transmission

2) Legendre coefficients for double-differential data (Memo CP-M/11)

1) Dictionary transmission TRANS 9060 is being distributed including the updates approved at the 1989 NRDC Meeting, plus some additions which have come up later.

Some new headings proposed in CP-C/188 are not approved yet (see conclusion 59 in CP-D/200) and were not included.

2) We also did not yet include the last of the new codes proposed for dict. 36 in memo CP-M/11: ,DA/DE, ,LEG/RDE.

We realize that this code was proposed in reply to our question (top of page 3 of memo CP-D/194) on a similar code proposed in CP-M/10. However, since RDE is a new modifier which must also be introduced in dictionary 34, and this is the first case in EXFOR of Legendre coefficients for double-differential data, we ask CDFE to provide the information in a way which can be used to update the LEXFOR page on 'Fitting coefficients'. This means giving a formula in 'normal' writing (as in LEXFOR, or in memo CP-D/194), and giving explicitly the dimension of the coefficients ag, plus other information useful for the compiler (e.g. whether or not the coefficients will normally be a function of the secondary energy).

Clearance: J.J. Schmidt

White

Distribution:

S. Pearlstein, NNDC

N. Tubbs, NEA-DB

V.N. Manokhin, CJD

F.E. Chukreev, CAJAD

A. Hashizume, RIKEN

V. Varlamov, CDFE

M. Chiba, Study Group

Cai Dunjiu, IAE-CP

NDS: S. Ganesan

M. Lammer

H.D. Lemmel HOL

M. de Moraes Cunha

K. Okamoto

V. Osorio

A. Pashchenko

J.J. Schmidt

O. Schwerer

M. Seits

Wang Dahai

3 spare copies

MEMO 4C-2/151

U45449

NDB/1344/cel 19th September 1990.

334-F4.11,2/

To:

Distribution

From:

S. Vebster

Subject:

Update dictionaries 25 and 36

The following are proposals for inclusion in the EXFOR dictionaries 25 and 36; they occur in the transmission 2127 presently in preparation.

Dictionary 25

PC/FIS/MEV

Per-cent per fission per MeV

(unit type FYDE)

Dictionary 36

,DA,LF,RSD

Angular distribution of light fission fragments relative to 90 deg. (unit type NO)

,DA/DE,,LEG Double

Double differential cross section Legendre

coefficient of the form

 $d^2(sig)/d(angle)dE = sum (A(L)P(L))$

ORIGINAL TO: FORWARD TO FILE STATION

DESCRIPTION

TO:

(unit type JAE)

INFORMATION

90 09 2 4

Eligi Ostipat

Leund

<u>Distribution</u>: Dr. V. Manokhin, CJD

Dr. S. Pearlstein, NNDC

Dr. J.J. Schmidt, NDS

cc. Ganesan

Osorio

Kocherov

Pashchenko

Lammer

Schmiat

Lemmel

Schwerer

Muir

Wang

Legendre Coefficients

Definition: Coefficients obtained by fitting a differential cross section using an equation containing a sum of Legendre polynomials.

REACTION Coding: LEG in SF8 plus a code indicating the exact representation used.

Representations:

DA,,LEG = A_1 (unit type DA, e.g., B/SR) where:

$$\frac{d\sigma}{d\Omega}(E,\theta) = a_0 + \sum_{i=1}^{n} a_i(E) P_i(\cos\theta)$$

 $DA_{i}LEG/RS = W_{i}$ (units NO-DIM) where:

$$\frac{d\sigma}{d\Omega}(E,\Theta) = \frac{\sigma}{4\pi} \left[1 + \sum_{i=1}^{n} W_i(E) P_i(\cos\Theta) \right]$$

 $DA_{i}LEG/RSL = B_{i}$ (units NO-DIM) where:

$$\frac{d\sigma}{d\Omega}(E,\Theta) = \frac{\sigma}{4\pi} \left[1 + \sum_{i=1}^{n} (2i+1) B_i P_i(\cos\Theta) \right]$$

 $DA_{i}LEG/2L2 = a_{i}$ (unit type $DA_{i}e.g., B/SR$) where:

$$\frac{d\sigma}{d\Omega}(E,\Theta) = 1/2 + \sum_{i=1}^{n} (2i+1)a_i(E)P_i(\cos\Theta)$$

 $DA_{n}LEG/L4P = a_{1}$ (unit type $DA_{n} e.g., B/SR$) where:

$$\frac{d\sigma}{d\Omega}(E,\theta) = \frac{1}{4\pi} \sum_{l=0}^{n} (2l+1)a_{l}(E)P_{l}(\cos\theta)$$

 $DA_{n}LEG/1K2 = a_{i}$ (units NO-DIM) where:

$$\frac{d\sigma}{d\Omega}(E,\Theta) = \frac{1}{k^2} + \sum_{l=1}^{n} a_l(E) P_l(\cos\Theta) \qquad k = \text{wave number}$$

$$DA/DE_{1}, LEG = \frac{d^2\sigma(E,E',\theta)}{dE'dD} =$$

$$\frac{\partial^{2} G(E, E', \theta)}{\partial E' \partial \Omega} = \frac{\int_{-\infty}^{\infty} |E(E', \theta)|}{\int_{-\infty}^{\infty} |E(E', \theta)|} = \frac{1}{\int_{-\infty}^{\infty} |E(E', \theta)|} = \frac{1}{\int_{-\infty}$$